
EECS 482 Introduction to Operating Systems
Spring/Summer 2020
Lecture 2: Threads

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Enables portability
Creates abstractions to make hardware easier to use

Manages shared hardware resources

2

Recall: What does an OS do?

Operating System

Hardware

Applications

OS Abstractions

3

Operating System

Hardware

Applications

CPU Disk RAM

Thread File system Virtual memory

4

Upcoming Schedule

This lecture starts a class segment that covers
processes, threads, and synchronization

Perhaps the most important in this class
Basis for Projects 1 and 2

Managing Concurrency
Source of OS complexity

Multiple users, programs, I/O
devices, etc.
Originally for efficient use of
H/W, but useful even now

How to manage this
complexity?

Divide and conquer
Modularity and abstraction

5

main()
{
getInput();
computeResult();
printOutput();
}

6

The Process
The process is the OS
abstraction for execution

Also sometimes called a job
or a task

For each area of OS, ask
What interface does
hardware provide?
What interface does OS
provide?

Process 1 Process 2 Process 3

CPU, memory, i/o devices

Process 1 Process 2 Process 3

CPU CPU CPU

The reality

The abstraction

Memory layout
Broken into 5 parts.

7

Stack
(grows down)

THE BIG VOID

Heap
(grows up)

Globals
(Fixed size)

Text
(The program)

Address MAX

Address 0

SP

Memory layout
1. C++ programs use a stack

pointer, usually a hardware
register in the CPU, which
points to the bottom of the
stack.

2. The stack grows downward
to lower addresses so that
objects on the stack can be
referenced in machine
instructions as SP + offset.

3. When a function is called,
memory is allocated on the
stack by adjusting the stack
pointer.

8

Stack
(grows down)

THE BIG VOID

Heap
(grows up)

Globals
(Fixed size)

Text
(The program)

Address MAX

Address 0

SP

Memory layout
1. When a procedure is

called, the space
allocated on the stack is
called a stack frame or
an activation record.

2. The stack frame holds
parameters being
passed, the return
address and any local
variables the function
needs.

9

Stack
(grows down)

THE BIG VOID

Heap
(grows up)

Globals
(Fixed size)

Text
(The program)

Address MAX

Address 0

SP

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

10

Memory image

result 0

SP

main

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

11

Memory image

result 0

x 0

SP

main

PlusOne
temp

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

12

Memory image

result 0

x 0

SP

main

PlusOne
temp 1

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

13

Memory image

result 1

SP

main

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

14

Memory image

result 1

x 1

SP

main

PlusTwo
temp

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

15

Memory image

result 1

x 1

SP

main

PlusTwo
temp 1

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

16

Memory image

result 1

x 1

main

PlusTwo
temp 1

x 1

SP

PlusOne
temp

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

17

Memory image

result 1

x 1

main

PlusTwo
temp 1

x 1

SP

PlusOne
temp 2

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

18

Memory image

result 1

x 1

SP

main

PlusTwo
temp 3

Call stack example
int PlusOne(int x)

{
return x + 1;
}

int PlusTwo(int x)
{
return 1 + PlusOne(x);
}

int main()
{
int result = 0;
result = PlusOne(0);
result = PlusTwo(result);
cout << result; // prints 3
}

19

Memory image

result 3

SP

main

What if you could have lots of stacks?

You could have lots of procedures in your code running
concurrently, switching rapidly between them.

If your PC has multiple cores (multiple CPUs) they could
all be running simultaneously.

That’s called a thread.

20

What if you could have lots of stacks?

To create a thread, you give the OS a pointer to the
procedure it should run and a void * to an argument.

The procedure runs in the new thread and when it
returns, the thread exits.

21

80 % g++ LinuxHelloMT.cpp -o LinuxHelloMT
81 % !$
LinuxHelloMT
Starting child
Waiting for child
Hello from the child!
Child has exited
82 %

// Linux multi-threaded hello world program.

#include <stdlib.h>
#include <pthread.h>
#include <iostream>
using namespace std;

void *Hello(void *p)
{
cout << "Hello from the child!" <<

endl;
}

int main(int argc, char **argv)
{
cout << "Starting child" << endl;
pthread_t child;

pthread_create(&child, nullptr, Hello, nullptr);

cout << "Waiting for child" << endl;
pthread_join(child, NULL);

cout << "Child has exited" << endl;
}

Could I have gotten other outputs?

23

Process Address Space

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Data

Segment

24

The Process Model
Windows, Linux and other operating systems have similar models.

Each process is protected from other processes.

It owns resources:

1. Memory image containing instructions and data.

2. Open handles to files and other system objects.

It also has some “state” information, including:

1. Current directory.

2. Environment variables passed as envp to main().

3. One or more threads of execution.

25

Threads
A thread is an execution path through your code that starts with a call to
a procedure that runs independently of any others.

This is how the C++ runtime starts and then calls main().

A thread’s “state” consists of:

1. An instruction pointer aka a program counter.

2. A stack and a stack pointer.

3. A general register set.

4. Its scheduling priority and other attributes.

5. Any locks it might hold. (More about this soon.)

Each thread shares the rest of the process state, the memory, open file
handles, etc., with every other thread.

If one thread changes a variable in memory, it affects all of them.

Threads and processes
Per thread
1. An instruction pointer

2. A stack

3. A register set

4. Its scheduling priority

5. Any locks it might hold

26

Shared process state
1. Memory

2. Open file handles

3. Current directory

4. Environment variables

27

Threads
Within a running process, there can be lots of running threads.

The operating system switches between them really quickly, letting one
thread run for a while or until it has to wait for i/o, then switches to
another to let it run.

Each thread shares the rest of the process state, the memory, open file
handles, etc., with every other thread.

If one thread changes a variable in memory or opens or closes a file, it
affects all of them.

What problems might this cause?

Multiple Threads
Can have lots of threads in a single address space changing things.
Sometimes they have interact and cooperate. (When?)
Sometimes they can work independently. (When?)

28

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC
(T1)

PC
(T3)PC

(T2)

Data

Segment

Major themes over the next month

Threads that can be scheduled concurrently.
How do multiple threads cooperate to accomplish a task?
How do multiple threads share a limited number of CPUs?
Does having multiple CPUs add new problems?

Address spaces for managing state information.
How do address spaces share single physical memory?
How is it done efficiently, flexibly and safely?

29

Why can threads do for us?
Example: Web server

Receives multiple simultaneous requests
Reads web pages from disk to satisfy each request

30

Option 1: Handle one request at a time
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Disk I/O for request 1 finishes
Server responds to request 1
Server reads in request 2

Pros and cons?
Easy to program, but slow

Can’t overlap disk requests with computation
Can’t overlap either with network sends and receives

31

time

Option 2: Overlap the i/o
Many early OS’s supported “overlapped i/o”. You only got single thread but
you could start an i/o without having to wait for it to complete.

Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

Fast, but hard to program
Why?

32

Web server must remember
What requests are being served, and what stage they’re in
What disk I/Os are outstanding (and which requests they belong to)

Lots of extra state!

time

Option 3: Multiple threads
Create a new thread for each request

Thread issues disk (or n/w) I/O, then waits for it to finish
Though thread is blocked on I/O, other threads can run
Where is the state of each request stored?

33

Thread 1
Request 1 arrives
Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1

Thread 2

Request 2 arrives
Read in request 2
Start disk I/O

Thread 3

Request 3 arrives
Read in request 3

Benefits of Threads

Thread manager takes care of CPU sharing
When one thread blocks on an i/o, other threads can progress.
Each thread has its own stack and can do its own thing.

Applications get a simpler programming model
The illusion of a dedicated CPU per thread.

Downsides compared to event-driven model?
Overhead involved in scheduling and context-switching.
Sharing of data becomes more difficult.
Race conditions and programming hazards.

34

Reminders

Sign up for GitHub and Piazza
Upload photo
Started putting together project group?

Group declaration due May 22.

Speak up when something is unclear

35

When are threads useful?
Multiple things happening at once
Usually some slow resource

Network, disk, user, …

Examples:
Controlling a physical system (e.g., airplane controller)
Bank ATM server
Window system
Parallel programming

36

Ideal Scenario
Split computation into threads
Threads run independent of each other

Divide and conquer works best if divided parts are
independent

How practical is thread independence?

37

Dependence between threads
Example 1: Microsoft Word

One thread formats document
Another thread spell checks document

Example 2: Desktop computer
One thread is running Chrome
Another thread is compiling your EECS 482 project

Two types of sharing: app resource or H/W
Example of non-interacting threads?

38

Cooperating threads
How can multiple threads cooperate on a single task?

Example: Ticketmaster’s webserver
Assume each thread has a dedicated processor

Problem:
Ordering of events across threads is non-deterministic
Speed of each processor is unpredictable

Thread A --->
Thread B - - - - - - - - - >
Thread C ->

Consequences:
Many possible global ordering of events
Some may produce incorrect results

39

Printing example

Possible outputs?
20 outputs: ABC123, AB1C23, AB12C3, AB123C, A1BC23,
A12BC3, A123BC, 1ABC23, 1A2BC3, …

Impossible outputs?
ABC321

Ordering within a thread is sequential.
Many ways to merge per-thread order into a global order
What’s being shared between these threads?

40

Thread 1
Print ABC

Thread 2
Print 123

Non-deterministic ordering
Non-deterministic results

Non-deterministic ordering
Non-deterministic results

Arithmetic example (y is initially 10)
What’s being shared between these
threads?
Possible results?

If A runs first: x = 11 and y = 20
If B runs first: x = 21 and y = 20

41

Thread A
x = y + 1

Thread B
y = y * 2

Non-deterministic ordering
Non-deterministic results

Another example
Possible results?

x = 1 or -1
Impossible results?

x = 0

42

Thread A
x = 0
x = 1

Thread B
x = 0
x = -1

Non-deterministic ordering
Non-deterministic results

A final example
Possible results?

x = 0, 1 or -1
Impossible results?

x = 2, -2

43

Thread A
x = 0
x++

Thread B
x = 0
x--

Atomic operations
Before we think about how make threads cooperate, we need for some
operations to be atomic.

Indivisible, i.e., it either happens in its entirety or not at all.
No events from other threads can occur in between.

Print example:
What if each print statement were atomic?
What if printing a single character were not atomic?

Most computers
Memory load and store are atomic.
Many other instructions are not atomic.

Example: double-precision floating point.
Need an atomic operation to build a bigger atomic operation.

44

Next Time …
Synchronization

45

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 2: Threads
	Recall: What does an OS do?
	OS Abstractions
	Upcoming Schedule
	Managing Concurrency
	The Process
	Memory layout
	Memory layout
	Memory layout
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	Call stack example
	What if you could have lots of stacks?
	What if you could have lots of stacks?
	Slide Number 22
	Process Address Space
	The Process Model
	Threads
	Threads and processes
	Threads
	Multiple Threads
	Major themes over the next month
	Why can threads do for us?
	Option 1: Handle one request at a time
	Option 2: Overlap the i/o
	Option 3: Multiple threads
	Benefits of Threads
	Reminders
	When are threads useful?
	Ideal Scenario
	Dependence between threads
	Cooperating threads
	Non-deterministic ordering �		Non-deterministic results
	Non-deterministic ordering �		Non-deterministic results
	Non-deterministic ordering �		Non-deterministic results
	Non-deterministic ordering �		Non-deterministic results
	Atomic operations
	Next Time …

